
Wirsching, H. G., Galanis, E., Weller, M. & Glioblastoma Handb. Clin. Neurol. 134, 381–397 https://doi.org/10.1016/B978-0-12-802997-8.00023-2 (2016).
Le Rhun, E. et al. Molecular focused remedy of glioblastoma. Most cancers Deal with. Rev. 80 https://doi.org/10.1016/j.ctrv.2019.101896 (2019).
Tabatabai, G. & Weller, M. Glioblastoma stem cells. Cell. Tissue Res. 343, 459–465. https://doi.org/10.1007/s00441-010-1123-0 (2011).
Osorio, J. A. & Aghi, M. Ok. Optimizing glioblastoma resection: Intraoperative mapping and past. CNS Oncol. 3, 359–366. https://doi.org/10.2217/cns.14.36 (2014).
Luo, C. et al. The prognosis of glioblastoma: A big, multifactorial research. Br. J. Neurosurg. 35, 555–561. https://doi.org/10.1080/02688697.2021.1907306 (2021).
Wu, H. et al. Single-cell RNA sequencing reveals tumor heterogeneity, microenvironment, and drug-resistance mechanisms of recurrent glioblastoma. Most cancers Sci. 114, 2609–2621. https://doi.org/10.1111/cas.15773 (2023).
Xavier-Magalhaes, A., Nandhabalan, M., Jones, C. & Costa, B. M. Molecular prognostic components in glioblastoma: State-of-the-art and future challenges. CNS Oncol. 2, 495–510. https://doi.org/10.2217/cns.13.48 (2013).
Gyamfi, J., Kim, J. & Choi, J. Most cancers as a metabolic dysfunction. Int. J. Mol. Sci. 23, 1155. https://doi.org/10.3390/ijms23031155 (2022).
Nguyen, T. T. T., Shang, E., Westhoff, M. A., Karpel-Massler, G. & Siegelin, M. D. Therapeutic drug-induced metabolic reprogramming in Glioblastoma. Cells 11, 2956. https://doi.org/10.3390/cells11192956 (2022).
Mullen, N. J. & Singh, P. Ok. Nucleotide metabolism: A pan-cancer metabolic dependency. Nat. Rev. Most cancers. 23, 275–294. https://doi.org/10.1038/s41568-023-00557-7 (2023).
Sharma, N. et al. Differential expression Profile of NLRs and AIM2 in Glioma and implications for NLRP12 in Glioblastoma. Sci. Rep. 9, 8480. https://doi.org/10.1038/s41598-019-44854-4 (2019).
Shireman, J. M. et al. De novo purine biosynthesis is a serious driver of chemoresistance in glioblastoma. Mind 144, 1230–1246. https://doi.org/10.1093/mind/awab020 (2021).
Perazzoli, G. et al. Temozolomide Resistance in Glioblastoma Cell strains: Implication of MGMT, MMR, P-Glycoprotein and CD133 expression. PLoS ONE. 10, e0140131. https://doi.org/10.1371/journal.pone.0140131 (2015).
He, D. et al. A novel lncRNA MDHDH suppresses glioblastoma multiforme by performing as a scaffold for MDH2 and PSMA1 to manage NAD + metabolism and autophagy. J. Exp. Clin. Most cancers Res. 41, 349. https://doi.org/10.1186/s13046-022-02543-7 (2022).
Wen, P. Y. et al. Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus overview on present administration and future instructions. Neuro Oncol. 22, 1073–1113. https://doi.org/10.1093/neuonc/noaa106 (2020).
Li, Y. et al. Identification of a nucleotide metabolism-related signature to foretell prognosis and information affected person care in hepatocellular carcinoma. Entrance. Genet. 13, 1089291. https://doi.org/10.3389/fgene.2022.1089291 (2022).
Wu, X., Sui, Z., Zhang, H., Wang, Y. & Yu, Z. Built-in evaluation of lncRNA-Mediated ceRNA community in lung adenocarcinoma. Entrance. Oncol. 10, 554759. https://doi.org/10.3389/fonc.2020.554759 (2020).
Zheng, X. et al. Identification and validation of immunotherapy for 4 novel clusters of colorectal most cancers based mostly on the tumor microenvironment. Entrance. Immunol. 13, 984480. https://doi.org/10.3389/fimmu.2022.984480 (2022).
Kanehisa, M. Towards understanding the origin and evolution of mobile organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/professional.3715 (2019).
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based evaluation of pathways and genomes. Nucleic Acids Res. 51, D587–D592. https://doi.org/10.1093/nar/gkac963 (2023).
Wu, T. et al. clusterProfiler 4.0: A common enrichment instrument for deciphering omics information. Innov. (Camb). 2, 100141. https://doi.org/10.1016/j.xinn.2021.100141 (2021).
Chen, Z. et al. A deep studying mannequin based mostly on capsule community and a focus mechanism for molecular carcinogenicity prediction. J. Cell. Mol. Med. 27, 3117–3126. https://doi.org/10.1111/jcmm.17889 (2023).
Zhu, F. et al. FM-FCN: A neural community with Filtering modules for correct very important indicators extraction. Res. (Wash D C). 7, 0361. https://doi.org/10.34133/analysis.0361 (2024).
Liu, L., Wei, Y., Zhang, Q. & Zhao, Q. S. S. C. R. B. Predicting circRNA-RBP Interplay websites utilizing a sequence and structural feature-based consideration mannequin. IEEE J. Biomed. Well being Inf. 28, 1762–1772. https://doi.org/10.1109/JBHI.2024.3354121 (2024).
Yang, X. et al. Multi-task aquatic toxicity prediction mannequin based mostly on multi-level options fusion. J. Adv. Res. 24, 2090–1232. https://doi.org/10.1016/j.jare.2024.06.002 (2024).
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear fashions by way of coordinate descent. J. Stat. Softw. 33, 1–22. https://doi.org/10.18637/jss.v033.i01 (2010).
Sachs, M. C. plotROC: A Device for plotting ROC Curves. J. Stat. Softw. 79 https://doi.org/10.18637/jss.v079.c02 (2017).
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R bundle for evaluating organic themes amongst gene clusters. OMICS 16, 284–287. https://doi.org/10.1089/omi.2011.0118 (2012).
Wang, W., Zhang, L., Solar, J., Zhao, Q. & Shuai, J. Predicting the potential human lncRNA-miRNA interactions based mostly on graph convolution community with conditional random subject. Temporary. Bioinform.. 23, bbac463. https://doi.org/10.1093/bib/bbac463 (2022).
Zhang, L., Yang, P., Feng, H., Zhao, Q. & Liu, H. Utilizing community distance evaluation to foretell lncRNA-miRNA interactions. Interdiscip Sci. 13, 535–545. https://doi.org/10.1007/s12539-021-00458-z (2021).
Xie, J. et al. LncRNA-miRNA interactions prediction based mostly on meta-path similarity and gaussian kernel similarity. J. Cell. Mol. Med. 28, e18590. https://doi.org/10.1111/jcmm.18590 (2024).
Yin, S. et al. Predicting the potential associations between circRNA and drug sensitivity utilizing a multisource feature-based strategy. J. Cell. Mol. Med. 28, e18591. https://doi.org/10.1111/jcmm.18591 (2024).
Xu, Q., Chen, S., Hu, Y. & Huang, W. Panorama of immune microenvironment underneath immune cell infiltration sample in breast most cancers. Entrance. Immunol. 12, 711433. https://doi.org/10.3389/fimmu.2021.711433 (2021).
Wang, T., Solar, J. & Zhao, Q. Investigating cardiotoxicity associated with hERG channel blockers utilizing molecular fingerprints and graph consideration mechanism. Comput. Biol. Med. 153, 106464. https://doi.org/10.1016/j.compbiomed.2022.106464 (2023).
Pavlova, N. N., Zhu, J. & Thompson, C. B. The hallmarks of most cancers metabolism: Nonetheless rising. Cell. Metab. 34, 355–377. https://doi.org/10.1016/j.cmet.2022.01.007 (2022).
Zhou, W. & Wahl, D. R. Metabolic abnormalities in glioblastoma and metabolic methods to beat remedy resistance. Cancers (Basel). 11, 1231. https://doi.org/10.3390/cancers11091231 (2019).
Wang, X. et al. Purine synthesis promotes upkeep of mind tumor initiating cells in glioma. Nat. Neurosci. 20, 661–673. https://doi.org/10.1038/nn.4537 (2017).
Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis by way of management of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733. https://doi.org/10.1126/science.aad0489 (2016).
Zhou, W. et al. Purine metabolism regulates DNA restore and remedy resistance in glioblastoma. Nat. Commun. 11, 3811. https://doi.org/10.1038/s41467-020-17512-x (2020).
Laks, D. R. et al. Inhibition of Nucleotide synthesis targets mind tumor stem cells in a subset of Glioblastoma. Mol. Most cancers Ther. 15, 1271–1278. https://doi.org/10.1158/1535-7163.MCT-15-0982 (2016).
Pudelko, L. et al. Glioblastoma and glioblastoma stem cells are depending on purposeful MTH1. Oncotarget 8, 84671–84684 https://doi.org/10.18632/oncotarget.19404 (2017).
Frances, A. & Cordelier, P. The rising position of cytidine deaminase in human illnesses: A brand new alternative for remedy? Mol. Ther. 28, 357–366. https://doi.org/10.1016/j.ymthe.2019.11.026 (2020).
Wang, J. et al. Uridine phosphorylase 1 is a novel immune-related goal and predicts worse survival in mind glioma. Most cancers Med. 9, 5940–5947. https://doi.org/10.1002/cam4.3251 (2020).
Park, H. et al. Adenylosuccinate lyase enhances aggressiveness of endometrial most cancers by growing killer cell lectin-like receptor C3 expression by fumarate. Lab. Make investments. 98, 449–461. https://doi.org/10.1038/s41374-017-0017-0 (2018).
Wang, Q. et al. Nomogram established on account of Lasso-Cox regression for predicting recurrence in sufferers with early-stage hepatocellular carcinoma. Entrance. Immunol. 13, 1019638. https://doi.org/10.3389/fimmu.2022.1019638 (2022).
Cui, H. et al. Complete evaluation of nicotinamide metabolism-related signature for predicting prognosis and immunotherapy response in breast most cancers. Entrance. Immunol. 14, 1145552. https://doi.org/10.3389/fimmu.2023.1145552 (2023).
Balaban, G. et al. Left ventricular form predicts arrhythmic threat in fibrotic dilated cardiomyopathy. Europace 24, 1137–1147. https://doi.org/10.1093/europace/euab306 (2022).
Anaturk, M. et al. Improvement and validation of a dementia threat rating within the UK Biobank and Whitehall II cohorts. BMJ Ment Well being. 26, e300719. https://doi.org/10.1136/bmjment-2023-300719 (2023).
Zacharopoulou, P. et al. Expression of sort I interferon-associated genes at antiretroviral remedy interruption predicts HIV virological rebound. Sci. Rep. 12, 462. https://doi.org/10.1038/s41598-021-04212-9 (2022).
Melhem, J. M., Detsky, J., Lim-Fats, M. J. & Perry, J. R. Updates in IDH-Wildtype Glioblastoma. Neurotherapeutics 19, 1705–1723. https://doi.org/10.1007/s13311-022-01251-6 (2022).
Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the scientific response of gliomas to alkylating brokers. N. Engl. J. Med. 343, 1350–1354. https://doi.org/10.1056/NEJM200011093431901 (2000).
Chen, R., Smith-Cohn, M., Cohen, A. L. & Colman, H. Glioma subclassifications and their scientific significance. Neurotherapeutics 14, 284–297. https://doi.org/10.1007/s13311-017-0519-x (2017).
Stupp, R. et al. Results of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised section III research: 5-year evaluation of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466. https://doi.org/10.1016/S1470-2045(09)70025-7 (2009).
Chen, A. Q., Jiang, Q. X., Zhu, Y. J. & Wang, Q. W. Transcriptomic profiling identifies a nucleotide metabolism-related signature with prognostic energy in gliomas. Transl Oncol. 49, 102068. https://doi.org/10.1016/j.tranon.2024.102068 (2024).
Solar, C. et al. Spatially resolved metabolomics to find tumor-associated metabolic alterations. Proc. Natl. Acad. Sci. U.S.A. 116, 52–57. https://doi.org/10.1073/pnas.1808950116 (2019).
Miyashita, H. et al. Uridine phosphorylase is a possible prognostic think about sufferers with oral squamous cell carcinoma. Most cancers 94, 2959–2966. https://doi.org/10.1002/cncr.10568 (2002).
Fecci, P. E. et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma with out eliminating regulatory T cells. Clin. Most cancers Res. 12, 4294–4305. https://doi.org/10.1158/1078-0432.CCR-06-0053 (2006).
Fecci, P. E. et al. Elevated regulatory T-cell fraction amidst a diminished CD4 compartment explains mobile immune defects in sufferers with malignant glioma. Most cancers Res. 66, 3294–3302. https://doi.org/10.1158/0008-5472.CAN-05-3773 (2006).
Ogbomo, H. et al. Myxoma virus an infection promotes NK lysis of malignant gliomas in vitro and in vivo. PLoS ONE. 8, e66825. https://doi.org/10.1371/journal.pone.0066825 (2013).
Huang, B. Y. et al. The PD-1/B7-H1 pathway modulates the pure killer cells versus mouse glioma stem cells. PLoS ONE. 10, e0134715. https://doi.org/10.1371/journal.pone.0134715 (2015).
Fang, C. et al. Co-mutations of TP53 and KRAS function potential biomarkers for immune checkpoint blockade in squamous-cell non-small cell lung most cancers: A case report. BMC Med. Genom. 12, 136. https://doi.org/10.1186/s12920-019-0592-6 (2019).
Murugesan, Ok. et al. Pan-tumor panorama of fibroblast progress issue receptor 1–4 genomic alterations. ESMO Open. 7, 100641. https://doi.org/10.1016/j.esmoop.2022.100641 (2022).
Romero, D. TMB is linked with prognosis. Nat. Rev. Clin. Oncol. 16, 336. https://doi.org/10.1038/s41571-019-0206-4 (2019).
Wang, W. et al. The cuproptosis-related signature related to the tumor atmosphere and prognosis of sufferers with glioma. Entrance. Immunol. 13, 998236. https://doi.org/10.3389/fimmu.2022.998236 (2022).