
Chen, Y. et al. A biologically impressed, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Robotic. 2, eaao5619 (2017).
Li, L. et al. Aerial-aquatic robots able to crossing the air-water boundary and hitchhiking on surfaces. Sci. Robotic. 7, eabm6695 (2022).
Zufferey, R. et al. Consecutive aquatic jump-gliding with water-reactive gas. Sci. Robotic. 4, eaax7330 (2019).
Tu, Z. et al. Crawl and fly: a bio-inspired robotic using unified actuation for hybrid aerial-terrestrial locomotion. IEEE Robotic. Autom. Lett. 6, 7549–7556 (2021).
Chukewad, Y. M., James, J., Singh, A. & Fuller, S. Robofly: an insect-sized robotic with simplified fabrication that’s able to flight, floor, and water floor locomotion. IEEE Trans. Robotic. 37, 2025–2040 (2021).
Shin, W. D., Park, J. & Park, H.-W. Growth and experiments of a bio-inspired robotic with multi-mode in aerial and terrestrial locomotion. Bioinspir. Biomim. 14, 056009 (2019).
Sihite, E., Kalantari, A., Nemovi, R., Ramezani, A. & Gharib, M. Multi-modal mobility morphobot (m4) with appendage repurposing for locomotion plasticity enhancement. Nat. Commun. 14, 3323 (2023).
Zufferey, R. et al. Sailmav: design and implementation of a novel multi-modal flying crusing robotic. IEEE Robotic. Autom. Lett. 4, 2894–2901 (2019).
Peloquin, R.-A., Thibault, D. & Desbiens, A. L. Design of a passive vertical takeoff and touchdown aquatic uav. IEEE Robotic. Autom. Lett. 2, 381–388 (2016).
Bachmann, R. J., Boria, F. J., Vaidyanathan, R., Ifju, P. G. & Quinn, R. D. A biologically impressed micro-vehicle able to aerial and terrestrial locomotion. Mech. Mach. Concept 44, 513–526 (2009).
Chukewad, Y. M., Singh, A. T., James, J. M. & Fuller, S. B. A brand new robotic fly design that’s simpler to manufacture and able to flight and floor locomotion. In 2018 IEEE/RSJ Worldwide Convention on Clever Robots and Methods (IROS). (eds Balaguer, C., Oliver, G., Bicchi, A. & Kawaguchi, Ok.) 4875–4882 (IEEE, 2018).
Dickson, J. D. & Clark, J. E. Design of a multimodal climbing and gliding robotic platform. IEEE/ASME Trans. Mechatron. 18, 494–505 (2012).
Vidyasagar, A., Zufferey, J.-C., Floreano, D. & Kovač, M. Efficiency evaluation of jump-gliding locomotion for miniature robotics. Bioinspir. Biomim. 10, 025006 (2015).
Wu, C. et al. A multi-modal tailless flapping-wing robotic able to flying, crawling, self-righting and horizontal take-off. IEEE Robotic. Autom. Lett. 9, 4734–4741 (2024).
Dickinson, M. H. et al. How animals transfer: an integrative view. Science 288, 100–106 (2000).
Biewener, A. A., Bomphrey, R. J., Daley, M. A. & Ijspeert, A. J. Stability and manoeuvrability in animal motion: classes from biology, modelling and robotics. Proc. R. Soc. B 289, 20212492 (2022).
Ramdya, P. & Ijspeert, A. J. The neuromechanics of animal locomotion: from biology to robotics and again. Sci. Robotic. 8, eadg0279 (2023).
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. Wing rotation and the aerodynamic foundation of insect flight. Science 284, 1954–1960 (1999).
Cheng, B. et al. Flight mechanics and management of escape manoeuvres in hummingbirds. i. flight kinematics. J. Exp. Biol. 219, 3518–3531 (2016).
Qiu, T. et al. Swimming by reciprocal movement at low reynolds quantity. Nat. Commun. 5, 5119 (2014).
Ijspeert, A. J. Biorobotics: utilizing robots to emulate and examine agile locomotion. Science 346, 196–203 (2014).
Chi, Y., Hong, Y., Zhao, Y., Li, Y. & Yin, J. Snapping for high-speed and high-efficient butterfly stroke-like gentle swimmer. Sci. Adv. 8, eadd3788 (2022).
Alexander, R. M. Rules of Animal Locomotion (Princeton College Press, Princeton, 2003).
Full, R. J. & Tu, M. S. Mechanics of a fast working insect: two-, four-and six-legged locomotion. J. Exp. Biol. 156, 215–231 (1991).
Porchetti, S. D., Bertini, R. J. & Langer, M. C. Strolling, working, hopping: evaluation of gait variability and locomotor abilities in brasilichnium elusivum leonardi, with inferences on trackmaker identification. Palaeogeogr. Palaeoclimatol. Palaeoecol. 465, 14–29 (2017).
Zhong, G., Cao, J., Chai, X. & Bai, Y. Design and efficiency evaluation of a triphibious robotic with tilting-rotor construction. IEEE Entry 9, 10871–10879 (2021).
Rockenbauer, F. M. et al. Dipper: a dynamically transitioning aerial-aquatic unmanned automobile. Robotic.: Sci. Syst. 2021, 12–16 (2021).
Roll, J. A., Bardroff, D. T. & Deng, X. Mechanics of a scalable excessive frequency flapping wing robotic platform able to lift-off. In 2016 IEEE Worldwide Convention on Robotics and Automation (ICRA). (eds Kragic, D., Sandoval, F., Bicchi, A. & Christensen, H.) 4664–4671 (IEEE, 2016).
Zou, Y., Zhang, W. & Zhang, Z. Liftoff of an electromagnetically pushed insect-inspired flapping-wing robotic. IEEE Trans. Robotic. 32, 1285–1289 (2016).
Baisch, A. T., Ozcan, O., Goldberg, B., Ithier, D. & Wooden, R. J. Excessive velocity locomotion for a quadrupedal microrobot. Int. J. Robotic. Res. 33, 1063–1082 (2014).
Chen, Y. et al. Managed flight of a microrobot powered by gentle synthetic muscle mass. Nature 575, 324–329 (2019).
Ma, Ok. Y., Chirarattananon, P., Fuller, S. B. & Wooden, R. J. Managed flight of a biologically impressed, insect-scale robotic. Science 340, 603–607 (2013).
Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wooden, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial automobile. Nature 570, 491–495 (2019).
McGill, R., seung Patrick Hyun, N. & Wooden, R. J. Modeling and management of flapping-wing micro-aerial autos with harmonic sinusoids. IEEE Robotic. Autom. Lett. 7, 746–753 (2021).
Phan, H. V., Kang, T. & Park, H. C. Design and steady flight of a 21 g insect-like tailless flapping wing micro air automobile with angular charges suggestions management. Bioinspir. Biomim. 12, 036006 (2017).
Karásek, M., Muijres, F. T., Wagter, C. D., Remes, B. D. W. & Croon, G. C. H. E. D. A tailless aerial robotic flapper reveals that flies use torque coupling in fast banked turns. Science 361, 1089–1094 (2018).
Keennon, M., Klingebiel, Ok. & Received, H. Growth of the nano hummingbird: a tailless flapping wing micro air automobile. In fiftieth AIAA Aerospace Sciences Assembly Together with the New Horizons Discussion board and Aerospace Exposition, 588 (AIAA, 2012).
Tu, Z., Fei, F., Zhang, J. & Deng, X. An at-scale tailless flapping-wing hummingbird robotic. i. design, optimization, and experimental validation. IEEE Trans. Robotic. 36, 1511–1525 (2020).
Hines, L., Campolo, D. & Sitti, M. Liftoff of a motor-driven, flapping-wing microaerial automobile able to resonance. IEEE Trans. Robotic. 30, 220–232 (2013).
Tu, Z., Fei, F. & Deng, X. Untethered flight of an at-scale dual-motor hummingbird robotic with bio-inspired decoupled wings. IEEE Robotic. Autom. Lett. 5, 4194–4201 (2020).
Phan, H. V., Aurecianus, S., Au, T. Ok. L., Kang, T. & Park, H. C. In the direction of the long-endurance flight of an insect-inspired, tailless, two-winged, flapping-wing flying robotic. IEEE Robotic. Autom. Lett. 5, 5059–5066 (2020).
Phan, H. V. & Park, H. C. Mechanisms of collision restoration in flying beetles and flapping-wing robots. Science 370, 1214–1219 (2020).
Phan, H. V., Aurecianus, S., Kang, T. & Park, H. C. Kubeetle-s: an insect-like, tailless, hover-capable robotic that may fly with a low-torque management mechanism. Int. J. Micro Air Veh. 11, 1756829319861371 (2019).
de Croon, G. C. H. E. et al. Design, aerodynamics and autonomy of the delfly. Bioinspir. Biomim. 7, 025003 (2012).
Roshanbin, A., Altartouri, H., Karásek, M. & Preumont, A. Colibri: a Hovering flapping twin-wing robotic. Int. J. Micro Air Veh. 9, 270–282 (2017).
Preumont, A., Wang, H., Kang, S., Wang, Ok. & Roshanbin, A. A be aware on the electromechanical design of a robotic hummingbird. In Actuators. (ed. Uchino, Ok.) Vol. 10, 52 (MDPI, 2021).
Nguyen, Q.-V. & Chan, W. L. Growth and flight efficiency of a biologically-inspired tailless flapping-wing micro air automobile with wing stroke airplane modulation. Bioinspir. Biomim. 14, 016015 (2018).
Park, M. & Abolfathi, A. Direct drive or slider-crank? evaluating motor-actuated flapping-wing micro aerial autos. Drone Syst. Appl. 12, 1–8 (2024).
Zhang, J., Tu, Z., Fei, F. & Deng, X. Geometric flight management of a hovering robotic hummingbird. In 2017 IEEE Worldwide Convention on Robotics and Automation (ICRA). (eds S. Hutchinson, Ang, Jr., M. H., Rus, D. & Sukhatme, G.) 5415–5421 (IEEE, 2017).
Fei, F., Tu, Z. & Deng, X. An at-scale tailless flapping wing hummingbird robotic: Ii. flight management in hovering and trajectory monitoring. Bioinspir. Biomim. 18, 026003 (2023).
Williamson, M. M. Neural management of rhythmic arm actions. Neural Netw. 11, 1379–1394 (1998).
Ijspeert, A. J. Central sample mills for locomotion management in animals and robots: a overview. Neural Netw. 21, 642–653 (2008).
Delcomyn, F. Neural foundation of rhythmic habits in animals. Science 210, 492–498 (1980).
Ijspeert, A. J., Crespi, A., Ryczko, D. & Cabelguen, J.-M. From swimming to strolling with a salamander robotic pushed by a spinal twine mannequin. Science 315, 1416–1420 (2007).
Dickinson, M. H. & Lighton, J. R. B. Muscle effectivity and elastic storage within the flight motor of drosophila. Science 268, 87–90 (1995).
Solar, M. Excessive-lift era and energy necessities of insect flight. Fluid Dyn. Res. 37, 21 (2005).
Deora, T., Sane, S. S. & Sane, S. P. Wings and halteres act as coupled twin oscillators in flies. Elife 10, e53824 (2021).
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. Relatively than resonance, flapping wing flyers could play on aerodynamics to enhance efficiency. Proc. Natl. Acad. Sci. USA 108, 5964–5969 (2011).
Dudley, R. The Biomechanics of Insect Flight: Type, Perform, Evolution (Princeton college press, 2002).
AP, W. The mechanics of flight within the hawkmoth manduca sexta. J. Exp. Biol. 200, 2705–2722 (1997).
Seok, S. et al. Design rules for energy-efficient legged locomotion and implementation on the mit cheetah robotic. IEEE/ASME Trans. Mechatron. 20, 1117–1129 (2014).
Krimsky, E. & Collins, S. H. Elastic energy-recycling actuators for environment friendly robots. Sci. Robotic. 9, eadj7246 (2024).
Liu, F. et al. Liftoff of a motor-driven flapping wing rotorcraft with mechanically decoupled wings. In 2022 Worldwide Convention on Robotics and Automation (ICRA). (eds Pappas, G. J., Kumar, V. & Roy, N.) 2092–2098 (IEEE, 2022).
Liu, F. et al. Design, modelling, and experimental validation of a self-rotating flapping wing rotorcraft with motor-spring resonance actuation system. Bioinspir. Biomim. 18, 046019 (2023).
Bomphrey, R. J., Nakata, T., Henningsson, P. & Lin, H.-T. Flight of the dragonflies and damselflies. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150389 (2016).
Lutz, P. L. & Musick, J. A. The BIology of Sea Turtles, Quantity I (CRC press, Florida, 1997).
McGowan, C. P. & Collins, C. E. Why do mammals hop? understanding the ecology, biomechanics and evolution of bipedal hopping. J. Exp. Biol. 221, jeb161661 (2018).
Li, H., Guo, S., Zhang, Y., Zhou, C. & Wu, J. Unsteady aerodynamic and optimum kinematic evaluation of a micro flapping wing rotor. Aerosp. Sci. Technol. 63, 167–178 (2017).
Zhang, J., Cheng, B. & Deng, X. Instantaneous wing kinematics monitoring and pressure management of a high-frequency flapping wing insect mav. J. Micro-Bio Robotic. 11, 67–84 (2016).
Gaissert, N. et al. Inventing a micro aerial automobile impressed by the mechanics of dragonfly flight. In In the direction of Autonomous Robotic Methods: 14th Annual Convention, TAROS 2013, Oxford, UK, August 28–30, 2013, Revised Chosen Papers 14, (eds Posner, I., Newman, P. & Prorok, A.) 90–100 (Springer, 2014).
Fuller, S. B. 4 wings: an insect-sized aerial robotic with steering skill and payload capability for autonomy. IEEE Robotic. Autom. Lett. 4, 570–577 (2019).
Chen, Y., Arase, C., Ren, Z. & Chirarattananon, P. Design, characterization, and liftoff of an insect-scale gentle robotic dragonfly powered by dielectric elastomer actuators. Micromachines 13, 1136 (2022).
Dileo, C. & Deng, X. Design of and experiments on a dragonfly-inspired robotic. Adv. Robotic. 23, 1003–1021 (2009).
Gravish, N., Peters, J. M., Combes, S. A. & Wooden, R. J. Collective circulation enhancement by tandem flapping wings. Phys. Rev. Lett. 115, 188101 (2015).
Liu, F., Li, S., Xiang, J., Li, D. & Tu, Z. Numerical comparability between symmetric and uneven flapping wing in tandem configuration. Phys. Fluids 36, 041901 (2024).
Muscutt, L., Weymouth, G. & Ganapathisubramani, B. Efficiency augmentation mechanism of in-line tandem flapping foils. J. Fluid Mech. 827, 484–505 (2017).
Liu, F. et al. Ceiling impact of flapping wing rotorcrafts to allow energy-efficient perching. Phys. Fluids 36, 021910 (2024).
van der Geest, N., Garcia, L., Nates, R. & Godoy, D. A. New perception into the swimming kinematics of untamed inexperienced sea turtles (chelonia mydas). Sci. Rep. 12, 18151 (2022).
van der Geest, N., Garcia, L., Nates, R. & Gonzalez-Vazquez, A. Sea turtles make use of drag-reducing strategies to preserve vitality. J. Mar. Sci. Eng. 10, 1770 (2022).
van der Geest, N., Garcia, L., Borret, F., Nates, R. & Gonzalez, A. Gentle-robotic inexperienced sea turtle (chelonia mydas) developed to switch animal experimentation offers new perception into their propulsive methods. Sci. Rep. 13, 11983 (2023).
Baines, R. et al. Multi-environment robotic transitions by way of adaptive morphogenesis. Nature 610, 283–289 (2022).
Butail, S., Abaid, N., Macrí, S., & Porfiri, M. Fish-robot interactions: robotic fish in animal behavioral research. In Robotic Fish: Bio-inspired Fishlike Underwater Robots. (eds Du, R., Li, Z., Youcef-Toumi, Ok. & Valdivia y Alvarado, P.) 359–377 (Springer, 2015).
Erturk, A. Macro-Fiber Composite Actuated Piezoelectric Robotic Fish, 255–283 (Springer, 2015).
Li, G. et al. Self-powered gentle robotic within the mariana trench. Nature 591, 66–71 (2021).
Chen, Z., Hou, P. & Ye, Z. Robotic fish propelled by a servo motor and ionic polymer-metal composite hybrid tail. J. Dyn. Syst. Meas. Management 141, 071001 (2019).
Wen, L. et al. Understanding fish linear acceleration utilizing an undulatory biorobotic mannequin with gentle fluidic elastomer actuated morphing median fins. Gentle Robotic. 5, 375–388 (2018).
Cao, Y., Lu, Y., Cai, Y., Bi, S. & Pan, G. Cpg-fuzzy-based management of a cownose-ray-like fish robotic. Ind. Robotic.: Int. J. Robotic. Res. Software 46, 779–791 (2019).
Tang, Y. et al. Leveraging elastic instabilities for amplified efficiency: spine-inspired high-speed and high-force gentle robots. Sci. Adv. 6, eaaz6912 (2020).
Chen, B. & Jiang, H. Physique stiffness variation of a tensegrity robotic fish utilizing antagonistic stiffness in a kinematically singular configuration. IEEE Trans. Robotic. 37, 1712–1727 (2021).
Kwak, B. & Bae, J. Towards quick and environment friendly mobility in aquatic setting: a robotic with compliant swimming appendages impressed by a water beetle. J. Bionic Eng. 14, 260–271 (2017).
Li, L. et al. Backside-level movement management for robotic fish to swim in teams: modeling and experiments. Bioinspir. Biomim. 14, 046001 (2019).
Zhong, Y., Li, Z. & Du, R. A novel robotic fish with wire-driven energetic physique and compliant tail. IEEE/ASME Trans. Mechatron. 22, 1633–1643 (2017).
Du, S., Wu, Z., Wang, J., Qi, S. & Yu, J. Design and management of a two-motor-actuated tuna-inspired robotic system. IEEE Trans. Syst. Man Cybern.: Syst. 51, 4670–4680 (2019).
Zhu, J. et al. Tuna robotics: a high-frequency experimental platform exploring the efficiency house of swimming fishes. Sci. Robotic. 4, eaax4615 (2019).
White, C. H., Lauder, G. V. & Bart-Smith, H. Tunabot flex: a tuna-inspired robotic with physique flexibility improves high-performance swimming. Bioinspir. Biomim. 16, 026019 (2021).
Clapham, R. J. & Hu, H. isplash: realizing quick carangiform swimming to outperform an actual fish. In Robotic Fish: Bio-inspired Fishlike Underwater Robots. (eds Du, R., Li, Z., Youcef-Toumi, Ok. & Valdivia y Alvarado, P.) 193–218 (Springer, 2015).
Guo, S. & Shi, L. A multifunctional underwater biomimetic microrobot. In Robotic Fish: Bio-Impressed Fishlike Underwater Robots. (eds Du, R., Li, Z., Youcef-Toumi, Ok. & Valdivia y Alvarado, P.) 285–313 (Springer, 2015).
Poulakakis, I., Smith, J. A. & Buehler, M. Modeling and experiments of untethered quadrupedal working with a bounding gait: the scout ii robotic. Int. J. Robotic. Res. 24, 239–256 (2005).
de Rivaz, S. D. et al. Inverted and vertical climbing of a quadrupedal microrobot utilizing electroadhesion. Sci. Robotic. 3, eaau3038 (2018).
Hyde, M. L. Evaluation and Comparability of Locomotion in Three Species of Kangaroo Rat, Genus Dipodomys. Ph.D. thesis, Texas Tech College (1977).
Gan, Z., Yesilevskiy, Y., Zaytsev, P. & Remy, C. D. All frequent bipedal gaits emerge from a single passive mannequin. J. R. Soc. Interface 15, 20180455 (2018).
Yamazaki, Ok. S. The Design and Management of Scout I, a Easy Quadruped Robotic. Ph.D. thesis, McGill College (1999).
Poulakakis, I., Smith, J. A. & Buchler, M. Experimentally validated bounding fashions for the scout ii quadrupedal robotic. In IEEE Worldwide Convention on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 3, 2595–2600 (IEEE, 2004).
Kim, S., Clark, J. E. & Cutkosky, M. R. isprawl: Design and tuning for high-speed autonomous open-loop working. Int. J. Robotic. Res. 25, 903–912 (2006).
Yang, X., Chang, L. & Pérez-Arancibia, N. O. An 88-milligram insect-scale autonomous crawling robotic pushed by a catalytic synthetic muscle. Sci. Robotic. 5, eaba0015 (2020).
Ji, X. et al. An autonomous untethered quick gentle robotic insect pushed by low-voltage dielectric elastomer actuators. Sci. Robotic. 4, eaaz6451 (2019).
Hoover, A. M., Steltz, E. & Fearing, R. S. Roach: an autonomous 2.4 g crawling hexapod robotic. In 2008 IEEE/RSJ Worldwide Convention on Clever Robots and Methods. (eds Siegwart, R., Christensen, H. & Lemoine, P.) 26–33 (IEEE, 2008).
Saranli, U., Buehler, M. & Koditschek, D. E. Rhex: a easy and extremely cell hexapod robotic. Int. J. Robotic. Res. 20, 616–631 (2001).
Qi, M. et al. A quick-moving electrostatic crawling insect. In 2017 IEEE thirtieth Worldwide Convention on Micro Electro Mechanical Methods (MEMS). (eds Freire, J. A. P., Ghodssi, R. & Lin, L.) 761–764 (IEEE, 2017).
Smith, J. A., Poulakakis, I., Trentini, M. & Sharf, I. Bounding with energetic wheels and liftoff angle velocity adjustment. Int. J. Robotic. Res. 29, 414–427 (2010).
Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R. & Rus, D. An untethered miniature origami robotic that self-folds, walks, swims, and degrades. In 2015 IEEE Worldwide Convention on Robotics and Automation (ICRA). (eds Hannaford, B., Yanco, H. & Chatila, R.) 1490–1496 (IEEE, 2015).
Liu, Y. et al. S2worm: a fast-moving untethered insect-scale robotic with 2-dof transmission mechanism. IEEE Robotic. Autom. Lett. 7, 6758–6765 (2022).
Spröwitz, A. et al. In the direction of dynamic trot gait locomotion: design, management, and experiments with cheetah-cub, a compliant quadruped robotic. Int. J. Robotic. Res. 32, 932–950 (2013).
Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robotic with multimodal locomotion. Nature 554, 81–85 (2018).
Wang, Q., Lu, X., Yuan, N. & Ding, J. Small-scale gentle robotic with excessive velocity and cargo capability impressed by kangaroo hopping. Adv. Intell. Syst. 4, 2100129 (2022).
Huang, H., He, W., Zou, Y. & Fu, Q. Ustbutterfly: a servo-driven biomimetic robotic butterfly. IEEE Trans. Ind. Electron. 71, 1758–1767 (2024).
Ouarda, Z., Nicolas, J., Hamid, S. & Giancarlo, F. Exploring unknown environments with multi-modal locomotion swarm. In Clever Distributed Computing X: Proceedings of the tenth Worldwide Symposium on Clever Distributed Computing–IDC 2016, Paris, France, October 10-12 2016 10. (eds Badica, C., Ganzha, M. & Paprzycki, M.) 131–140 (Springer, 2017).
Maglione, G. L. et al. M&s primarily based testbed to assist v&v of autonomous sources process coordinator. In Modelling and Simulation for Autonomous Methods: seventh Worldwide Convention, MESAS 2020, Prague, Czech Republic, October 21, 2020, Revised Chosen Papers 7. (eds Mukhopadhyay, S. & Mason, A.) 123–138 (Springer, 2021).
Ugenti, A. et al. On the position of characteristic and sign choice for terrain studying in planetary exploration robots. J. Subject Robotic. 39, 355–370 (2022).
Tu, Z., Fei, F., Zhang, J. & Deng, X. Performing is seeing: navigating tight house utilizing flapping wings. In 2019 Worldwide Convention on Robotics and Automation (ICRA). (eds Hutchinson, S., Dudek, G. & Rus, D.) 95–101 (IEEE, 2019).
Hu, Y., Liang, J. & Wang, T. Parameter synthesis of coupled nonlinear oscillators for cpg-based robotic locomotion. IEEE Trans. Ind. Electron. 61, 6183–6191 (2014).