
Wu, J., Liu, H., Chen, W., Ma, B. & Ju, H. Gadget integration of electrochemical biosensors. Nat. Rev. Bioeng. 1, 346–360 (2023).
Liu, W. Y., Cheng, H. Y. & Wang, X. F. Pores and skin-interfaced colorimetric microfluidic units for on-demand sweat evaluation. npj Flex. Electron. 7, 43 (2023).
Ye, Z. L. et al. A breathable, reusable, and zero-power sensible face masks for wi-fi cough and mask-wearing monitoring. ACS Nano 16, 5874–5884 (2022).
Gao, W. et al. Absolutely built-in wearable sensor arrays for multiplexed in situ perspiration evaluation. Nature 529, 509–514 (2016).
Xiang, Y. & Lu, Y. Utilizing private glucose meters and purposeful DNA sensors to quantify a wide range of analytical targets. Nat. Chem. 3, 697–703 (2011).
Puthussery, J. V. et al. Actual-time environmental surveillance of SARS-CoV-2 aerosols. Nat. Commun. 14, 3692 (2023).
Horvath, I. et al. Exhaled breath condensate: methodological suggestions and unresolved questions. Eur. Resp. J. 26, 523–548 (2005).
Tankasala, D. & Linnes, J. C. Noninvasive glucose detection in exhaled breath condensate. Transl. Res. 213, 1–22 (2019).
Arnold, C. Diagnostics to take your breath away. Nat. Biotechnol. 40, 990–993 (2022).
Zhang, S. L. et al. Speedy measurement of lactate within the exhaled breath condensate: biosensor optimization and in-human proof of idea. ACS Sens. 7, 3809–3816 (2022).
Heng, W. et al. A wise masks for exhaled breath condensate harvesting and evaluation. Science 385, 954–961 (2024).
Istif, E. et al. Miniaturized wi-fi sensor permits real-time monitoring of meals spoilage. Nat. Meals 4, 427–436 (2023).
Chatterjee, S. G., Chatterjee, S., Ray, A. Ok. & Chakraborty, A. Ok. Graphene-metal oxide nanohybrids for poisonous fuel sensor: a overview. Sens. Actuators B 221, 1170–1181 (2015).
Klotz, T., Ibrahim, A., Maddern, G., Caplash, Y. & Wagstaff, M. Units measuring transepidermal water loss: a scientific overview of measurement properties. Pores and skin Res. Technol. 28, 497–539 (2022).
Mainelis, G. Bioaerosol sampling: classical approaches, advances, and views. Aerosol Sci. Technol. 54, 496–519 (2020).
Hering, S. V. & Stolzenburg, M. R. A technique for particle measurement amplification by water condensation in a laminar, thermally diffusive stream. Aerosol Sci. Technol. 39, 428–436 (2005).
Hering, S. V., Spielman, S. R. & Lewis, G. S. Moderated, water-based, condensational particle development in a laminar stream. Aerosol Sci. Technol. 48, 401–408 (2014).
Asadi, S. et al. Influenza A virus is transmissible by way of aerosolized fomites. Nat. Commun. 11, 4062 (2020).
Yu, Y. et al. Development traits of submicron particles by water vapor condensation within the multi-section development tube. Powder Technol. 440, 119797 (2024).
Zervaki, O., Dionysiou, D. D. & Kulkarni, P. A high-throughput, turbulent-mixing, condensation aerosol concentrator for direct aerosol assortment as a liquid suspension. J. Aerosol Sci. 182, 106442 (2024).
Gupta, R. et al. Ultrasensitive lateral-flow assays by way of plasmonically lively antibody-conjugated fluorescent nanoparticles. Nat. Biomed. Eng. 7, 1556–1570 (2023).
Koh, A. et al. A comfortable, wearable microfluidic system for the seize, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).
Xu, C. H. et al. A physicochemical-sensing digital pores and skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024).
Kroger, D. G. & Rohsenow, W. M. Condensation warmth switch within the presence of a non-condensable fuel. Int. J. Warmth Mass Switch 11, 15–26 (1968).
Wang, R. S., Guo, J. H., Muckleroy, E. A. & Antao, D. S. Strong silane self-assembled monolayer coatings on plasma-engineered copper surfaces selling dropwise condensation. Int. J. Warmth Mass Switch 194, 123028 (2022).
Cha, H. Y. et al. Nanoscale-agglomerate-mediated heterogeneous nucleation. Nano Lett. 17, 7544–7551 (2017).
Ma, J., Sett, S., Cha, H., Yan, X. & Miljkovic, N. Current developments, challenges, and pathways to steady dropwise condensation: a perspective. Appl. Phys. Lett. 116, 260501 (2020).
Miljkovic, N., Enright, R. & Wang, E. N. Impact of droplet morphology on development dynamics and warmth switch throughout condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 1776–1785 (2012).
Sander, R. Compilation of Henry’s legislation constants (model 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).
Pahlavan, A. A., Yang, L. S., Bain, C. D. & Stone, H. A. Evaporation of binary-mixture liquid droplets: the formation of picoliter pancakelike shapes. Phys. Rev. Lett. 127, 024501 (2021).
Christy, J. R. E., Hamamoto, Y. & Sefiane, Ok. Movement transition inside an evaporating binary combination sessile drop. Phys. Rev. Lett. 106, 205701 (2011).
Bell, A. Ok. et al. Focus gradients in evaporating binary droplets probed by spatially resolved Raman and NMR spectroscopy. Proc. Natl Acad. Sci. USA 119, e2111989119 (2022).
Diddens, C., Li, Y. X. & Lohse, D. Competing Marangoni and Rayleigh convection in evaporating binary droplets. J. Fluid Mech. 914, A23 (2021).
Delgado, J. M. P. Q. Molecular diffusion coefficients of natural compounds in water at totally different temperatures. J. Part Equilibria Diffus. 28, 427–432 (2007).
Zhao, P. Y. et al. Multiphysics evaluation for uncommon warmth convection in microwave heating liquid. AIP Adv. 10, 085201 (2020).
Khorshid, M. et al. An environment friendly low-cost system for sampling exhaled breath condensate EBC. Adv. Sensor Res. 3, 2400020 (2024).
Karyakin, A. A. et al. Non-invasive monitoring of diabetes via evaluation of the exhaled breath condensate (aerosol). Electrochem. Commun. 83, 81–84 (2017).
Saigal, S. & Doyle, L. W. An outline of mortality and sequelae of preterm beginning from infancy to maturity. Lancet 371, 261–269 (2008).
Richter, L. L. et al. Temporal tendencies in neonatal mortality and morbidity following spontaneous and clinician-initiated preterm beginning in Washington State, USA: a population-based research. BMJ Open 9, e023004 (2019).
Butler, R. B. A. Preterm Start: Causes, Penalties, and Precention (eds Behram, R. E. & Stith Butler, A.) 313–346 (Nationwide Academies Press, 2007).
Lu, L. et al. Transcriptional modulation of intestinal innate protection/irritation genes by preterm toddler microbiota in a humanized gnotobiotic mouse mannequin. PLoS ONE 10, e0124504 (2015).
Lu, J. et al. Results of intestinal microbiota on mind improvement in humanized gnotobiotic mice. Sci. Rep. 8, 5443 (2018).
Lu, J. et al. Early preterm toddler microbiome impacts grownup studying. Sci. Rep. 12, 3310 (2022).
Park, S. J. & Im, D. S. Blockage of sphingosine-1-phosphate receptor 2 attenuates allergic bronchial asthma in mice. Br. J. Pharmacol. 176, 938–949 (2019).
Patil, M. J., Meeker, S., Bautista, D., Dong, X. & Undem, B. J. Sphingosine-1-phosphate prompts mouse vagal airway afferent C-fibres by way of S1PR3 receptors. J. Physiol. 597, 2007–2019 (2019).
Thebaud, B. et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primers 5, 78 (2019).
Stevens, N. C. et al. Alteration of glycosphingolipid metabolism by ozone is related to exacerbation of allergic bronchial asthma traits in mice. Toxicol. Sci. 191, 79–89 (2023).
Mirhoseini, S. H., Nikaeen, M., Khanahmad, H., Hatamzadeh, M. & Hassanzadeh, A. Monitoring of airborne micro organism and aerosols in several wards of hospitals—particle counting usefulness in investigation of airborne micro organism. Ann. Agric. Environ. Med. 22, 670–673 (2015).
Park, D. U., Yeom, J. Ok., Lee, W. J. & Lee, Ok. M. Evaluation of the degrees of airborne micro organism, Gram-negative micro organism, and fungi in hospital lobbies. Int. J. Environ. Res. Public Well being 10, 541–555 (2013).
Buda, R. et al. Dynamics of passive response to a sudden lower in exterior osmolarity. Proc. Natl Acad. Sci. USA 113, E5838–E5846 (2016).
Schulte, F., Lingott, J., Panne, U. & Kneipp, J. Chemical characterization and classification of pollen. Anal. Chem. 80, 9551–9556 (2008).
Guedes, A., Ribeiro, H., Fernández-González, M., Aira, M. J. & Abreu, I. Pollen Raman spectra database: utility to the identification of airborne pollen. Talanta 119, 473–478 (2014).
Wang, D. J. & White, J. C. Good thing about nano-enabled agrochemicals. Nat. Meals 3, 983–984 (2022).
Ho, C. S. et al. Speedy identification of pathogenic micro organism utilizing Raman spectroscopy and deep studying. Nat. Commun. 10, 4927 (2019).
Wang, C. et al. Biomimetic olfactory chips based mostly on large-scale monolithically built-in nanotube sensor arrays. Nat. Electron. 7, 157–167 (2024).
Weisbecker, H. et al. AI-assisted multimodal breath sensing system with semiconductive polymers for correct monitoring of ammonia biomarkers. Adv. Mater. Technol. 9, 2301884 (2024).
Li, J. et al. Aerodynamics-assisted, environment friendly and scalable kirigami fog collectors. Nat. Commun. 12, 5484 (2021).
Li, T. et al. Scalable and environment friendly solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat. Water 1, 971–981 (2023).
Ma, J. et al. A lipid-inspired extremely adhesive interface for sturdy superhydrophobicity in moist environments and steady leaping droplet condensation. ACS Nano 3, 4251–4262 (2022).
Mustafa, F. & Andreescu, S. Chemical and organic sensors for food-quality monitoring and sensible packaging. Meals 7, 168 (2018).
Ho, D. H., Choi, Y. Y., Jo, S. B., Myoung, J. M. & Cho, J. H. Sensing with MXenes: progress and prospects. Adv. Mater. 33, 2005846 (2021).
Huang, L. B. et al. Ultrasensitive, fast-responsive, directional airflow sensing by bioinspired suspended graphene fibers. Nano Lett. 23, 597–605 (2023).
Wang, Ok. N. et al. A polarity-sensitive ratiometric fluorescence probe for monitoring adjustments in lipid droplets and nucleus throughout ferroptosis. Angew. Chem. Int. Ed. 60, 15095–15100 (2021).
Dai, T. J. et al. An AIEgen as an intrinsic antibacterial agent for light-up detection and inactivation of intracellular Gram-positive micro organism. Adv. Healthcare Supplies 10, 2100885 (2021).
Zhang, J. J. et al. Ultrasensitive point-of-care biochemical sensor based mostly on metal-AlEgen frameworks. Sci. Adv. 8, eabo1874 (2022).
Thomas, V., Clark, J. & Dore, J. Fecal microbiota evaluation: an summary of pattern assortment strategies and sequencing methods. Future Microbiol. 10, 1485–1504 (2015).