
Eissa, M. E. H. et al. Dietary inclusion of Pediococcus acidilactici probiotic promoted the expansion indices, hemato-biochemical indices, enzymatic profile, intestinal and liver histomorphology, and resistance of nile Tilapia towards Aspergillus flavus. Anim. Feed Sci. Technol. 306, 115814. https://doi.org/10.1016/j.anifeedsci.2023.115814 (2023).
Han, S. M., Lee, Ok. G., Park, Ok. Ok. & Pak, S. C. Antimicrobial exercise of honey bee venom towards choose infectious fish pathogens. North. Am. J. Aquaculture. 75, 445–448. https://doi.org/10.1080/15222055.2013.802264 (2013).
Rajeev, R., Adithya, Ok. Ok., Kiran, G. S. & Selvin, J. Wholesome microbiome: a key to profitable and sustainable shrimp aquaculture. Critiques Aquaculture. 13, 238–258. https://doi.org/10.1111/raq.12471 (2021).
Kumaran, M. et al. Is Pacific white shrimp (Penaeus vannamei) farming in India sustainable? A multidimensional indicators-based evaluation. Environ. Dev. Maintain. 23, 6466–6480. https://doi.org/10.1007/s10668-020-00881-0 (2021).
Ahmed, N. Linking Prawn and shrimp farming in direction of a inexperienced financial system in bangladesh: confronting local weather change. Ocean. Coastal. Handle. 75, 33–42. https://doi.org/10.1016/j.ocecoaman.2013.01.002 (2013).
Belton, B., Padiyar, A., Ravibabu, G. & Gopal Rao, Ok. Increase and bust in Andhra pradesh: growth and transformation in india’s home aquaculture worth chain. Aquaculture 470, 196–206. https://doi.org/10.1016/j.aquaculture.2016.12.019 (2017).
Zou, Y. et al. Dedication of the infectious agent of translucent Publish-Larva illness (TPD) in Penaeus vannamei. 9, 741, (2020). https://doi.org/10.3390/pathogens9090741
Luo, Ok. et al. Analysis of paraprobiotic applicability of Clostridium butyricum CBG01 in bettering the expansion efficiency, immune responses and illness resistance in Pacific white shrimp, Penaeus vannamei. Aquaculture 544, 737041. https://doi.org/10.1016/j.aquaculture.2021.737041 (2021).
Letchumanan, V., Chan, Ok. G. & Lee, L. H. J. F. i. m. Vibrio parahaemolyticus: a overview on the pathogenesis, prevalence, and advance molecular identification methods. 5, 705, (2014). https://doi.org/10.3389/fmicb.2014.00705
Aly, S. M., ElBanna, N. I., Elatta, M. A., Hegazy, M. & Fathi, M. Prevalence, molecular typing, antibiogram and histopathological modifications of V. harveyi and V. parahaemolyticus remoted from Gilthead sea bream (Sparus aurata). Aquaculture and Fisheries, (2023). https://doi.org/10.1016/j.aaf.2023.11.002
Yang, H. et al. Efficacy of Hydroxy-L-proline (HYP) analogs within the therapy of main hyperoxaluria in Drosophila Melanogaster. BMC Nephrol. 19, 167. https://doi.org/10.1186/s12882-018-0980-8 (2018).
Zhong, Y. et al. Investigation of the interplay between the destiny of antibiotics in aquafarms and their stage within the setting. J. Environ. Handle. 207, 219–229. https://doi.org/10.1016/j.jenvman.2017.11.030 (2018).
Bansemir, A., Blume, M., Schröder, S. & Lindequist, U. Screening of cultivated seaweeds for antibacterial exercise towards fish pathogenic micro organism. Aquaculture 252, 79–84. https://doi.org/10.1016/j.aquaculture.2005.11.051 (2006).
Tukmechi, A., Ownagh, A. & Mohebbat, A. In vitro antibacterial actions of ethanol extract of Iranian propolis (EEIP) towards fish pathogenic micro organism (Aeromonas hydrophila, Yersinia ruckeri & Streptococcus iniae). Brazilian J. Microbiol. 41 https://doi.org/10.1590/S1517-83822010000400030 (2010).
de la Cruz-Cervantes, J. A., Benavides-González, F., Sánchez-Martínez, J. G., Vázquez-Sauceda, M. L. & Ruiz-Uribe, A. J. Propolis in aquaculture: A overview of its potential. Critiques Fisheries Sci. Aquaculture. 26, 337–349. https://doi.org/10.1080/23308249.2018.1424798 (2018).
Rady, I., Siddiqui, I. A., Rady, M. & Mukhtar, H. J. C. L. Melittin, a significant peptide part of bee venom, and its conjugates in most cancers remedy. 402, 16–31, (2017). https://doi.org/10.1016/j.canlet.2017.05.010
Baracchi, D., Francese, S. & Turillazzi, S. Past the antipredatory defence: honey bee venom operate as a part of social immunity. Toxicon 58, 550–557. https://doi.org/10.1016/j.toxicon.2011.08.017 (2011).
Kim, H. et al. Bee venom mitigates cisplatin-induced nephrotoxicity by regulating CD4 + CD25 + Foxp3 + regulatory T cells in mice. (2013). https://doi.org/10.1155/2013/879845
Lim, B. S. et al. Impact of bee venom acupuncture on Oxaliplatin-Induced chilly allodynia in rats. Proof-Primarily based Complement. Altern. Med. 369324 https://doi.org/10.1155/2013/369324 (2013).
Park, Y. C. et al. Lengthy-Time period effectiveness of bee venom acupuncture and physiotherapy within the therapy of adhesive capsulitis: A One-12 months Comply with-Up evaluation of a earlier randomized managed trial. J. Altern. Complement. Med. 20, 919–924. https://doi.org/10.1089/acm.2014.0220 (2014).
Kabakci, D., Ürkü, Ç. & Önalan, Ş. Dedication of the antibacterial impact of bee venom towards rainbow trout pathogens and antibiotic resistance gene expression. Acta Vet. 73, 374–388. https://doi.org/10.2478/acve-2023-0028 (2023).
El-Bilawy, E. H., Mamdouh, I., Behiry, S. & Teiba, I. I. Evaluating the antibacterial efficacy of bee venom towards multidrug-resistant pathogenic micro organism: Escherichia coli, Salmonella typhimurium, and Enterococcus faecalis. World J. Microbiol. Biotechnol. 41, 40. https://doi.org/10.1007/s11274-024-04248-9 (2025).
El Basuini, M. F. et al. Bee venom enhances efficiency and immune operate in thinlip mullet: A promising method for sustainable aquaculture. Fish Shellfish Immunol. 151, 109713. https://doi.org/10.1016/j.fsi.2024.109713 (2024).
Mohan, Ok. et al. Chitin, Chitosan and chitooligosaccharides as potential progress promoters and immunostimulants in aquaculture: A complete overview. Int. J. Biol. Macromol. 251, 126285. https://doi.org/10.1016/j.ijbiomac.2023.126285 (2023).
Parhi, R. Drug supply purposes of Chitin and chitosan: a overview. Environ. Chem. Lett. 18, 577–594. https://doi.org/10.1007/s10311-020-00963-5 (2020).
Eissa, E. S. H. et al. Pumpkin seed oil-loaded Chitosan nanoparticles improve progress, digestive enzymes, and immune response in whiteleg shrimp (Litopenaeus vannamei): impacts on histopathology and survival towards Vibrio parahaemolyticus. Aquaculture Rep. 40, 102599. https://doi.org/10.1016/j.aqrep.2024.102599 (2025).
Selvasudha, N., Sweety, J. P., Dhanalekshmi, U. M. & Ruckmani, Ok. Springer Nature Singapore, in Marine Biomaterials: Drug Supply and Therapeutic Functions (eds Sougata Jana & Subrata Jana) 97–137, (2022). https://doi.org/10.1007/978-981-16-4787-1_4
Im, E. J., Kim, S. J., Hong, S. B., Park, J. Ok. & Rhee, M. H. Anti-Inflammatory Exercise of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway. Proof-Primarily based Complementary and Various Medication 3704764, (2016). https://doi.org/10.1155/2016/3704764 (2016).
Leandro, L. F. et al. Antimicrobial exercise of apitoxin, Melittin and phospholipase A 2 of honey bee (Apis mellifera) venom towards oral pathogens. 87, 147–155, (2015). https://doi.org/10.1590/0001-3765201520130511
Al-Safar, M. & Salman, J. J. Antibacterial exercise of bee venom towards multidrug resistant Acinetobacter baumannii regionally isolates. I J. R P S. 9, 1510–1514 (2018).
Ploydee, E. & Chaiyanan, S. Manufacturing of Excessive Viscosity Chitosan from Biologically Purified Chitin Remoted by Microbial Fermentation and Deproteinization. Worldwide Journal of Polymer Science 162173, (2014). https://doi.org/10.1155/2014/162173 (2014).
De Queiroz Antonino, R. S. et al. Preparation and characterization of Chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar. Medication. 15 https://doi.org/10.3390/md15050141 (2017).
Hosni, A. et al. Therapeutic significance of thymoquinone-loaded Chitosan nanoparticles on streptozotocin/nicotinamide-induced diabetic rats: in vitro and in vivo practical evaluation. Int. J. Biol. Macromol. 221, 1415–1427. https://doi.org/10.1016/j.ijbiomac.2022.09.048 (2022).
Amin, B. H., Ahmed, H. Y., El Gazzar, E. M. & Badawy, M. M. M. Enhancement the mycosynthesis of selenium nanoparticles by utilizing gamma radiation. Dose-Response 19 (15593258211059323). https://doi.org/10.1177/15593258211059323 (2021).
Lee, M. J. C. & Worldwide, A. O. A. C. Official strategies of research of AOAC worldwide. Edited Patricia A. 359, 399300 (1995). sixteenth ed.
Du, L. & Niu, C. J. Results of dietary substitution of Soya bean meal for fish meal on consumption, progress, and metabolism of juvenile big freshwater Prawn. Macrobrachium rosenbergii. 9, 139–143. https://doi.org/10.1046/j.1365-2095.2003.00239.x (2003).
Liu, C. H. & Chen, J. C. Impact of ammonia on the immune response of white ShrimpLitopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol. 16, 321–334. https://doi.org/10.1016/S1050-4648(03)00113-X (2004).
Hernández-López, J., Gollas-Galván, T. & Vargas-Albores, F. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes). Comp. Biochem. Physiol. Half. C: Pharmacol. Toxicol. Endocrinol. 113, 61–66. https://doi.org/10.1016/0742-8413(95)02033-0 (1996).
Lin, Y. C., Tayag, C. M., Huang, C. L., Tsui, W. C. & Chen, J. C. White shrimp Litopenaeus vannamei that had obtained the hot-water extract of Spirulina platensis confirmed earlier restoration in immunity and up-regulation of gene expressions after pH stress. Fish Shellfish Immunol. 29, 1092–1098. https://doi.org/10.1016/j.fsi.2010.09.002 (2010).
Rengpipat, S., Rukpratanporn, S., Piyatiratitivorakul, S. & Menasaveta, P. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191, 271–288. https://doi.org/10.1016/S0044-8486(00)00440-3 (2000).
Adams, A. Response of Penaeid shrimp to publicity to Vibrio species. Fish Shellfish Immunol. 1, 59–70. https://doi.org/10.1016/S1050-4648(06)80020-3 (1991).
Bolann, B. J. & Ulvik, R. J. Enchancment of a direct spectrophotometric assay for routine dedication of superoxide dismutase exercise. Clin. Chem. 37, 1993–1999. https://doi.org/10.1093/clinchem/37.11.1993 (1991).
Johansson, L. H. Håkan borg, L. A. A spectrophotometric technique for dedication of catalase exercise in small tissue samples. Anal. Biochem. 174, 331–336. https://doi.org/10.1016/0003-2697(88)90554-4 (1988).
Ohkawa, H., Ohishi, N. & Yagi, Ok. Assay for lipid peroxides in animal tissues by thiobarbituric acid response. Anal. Biochem. 95, 351–358. https://doi.org/10.1016/0003-2697(79)90738-3 (1979).
Borlongan, I. G. Research on the digestive lipases of milkfish, Chanos chanos. Aquaculture 89, 315–325. https://doi.org/10.1016/0044-8486(90)90135-A (1990).
Livak, Ok. J. & Schmittgen, T. D. J. M. Evaluation of relative gene expression information utilizing real-time quantitative PCR and the two – ∆∆CT M.thod. 25, 402–408, (2001). https://doi.org/10.1006/meth.2001.1262
Duan, Y. et al. Adjustments within the gut microbial, digestion and immunity of Litopenaeus vannamei in response to dietary resistant starch. Sci. Rep. 9, 6464. https://doi.org/10.1038/s41598-019-42939-8 (2019).
Eissa, E. S. H. et al. Protecting results of Chlorella vulgaris as a feed additive on progress efficiency, immunity, histopathology, and illness resistance towards Vibrio parahaemolyticus within the Pacific white shrimp. Aquacult. Int. 32, 2821–2840. https://doi.org/10.1007/s10499-023-01298-y (2024).
Balcázar, J. L., Rojas-Luna, T. & Cunningham, D. P. Impact of the addition of 4 potential probiotic strains on the survival of pacific white shrimp (Litopenaeus vannamei) following immersion problem with Vibrio parahaemolyticus. 96, 147–150 (2007). https://doi.org/10.1016/j.jip.2007.04.008
Eissa, M. E. H., Hendam, B. M., ElBanna, N. I. & Aly, S. M. Nano-chitosan encapsulation of bee venom: a possible therapeutic technique for enhancing tilapia well being and resistance to Aeromonas hydrophila. Aquacult. Int. 33, 368. https://doi.org/10.1007/s10499-025-02043-3 (2025).
Mabrouk, M. M. et al. Arthrospira platensis nanoparticles dietary supplementation improves progress efficiency, steroid hormone stability, and reproductive productiveness of nile tilapia (Oreochromis niloticus) broodstock. PLOS ONE. 19, e0299480. https://doi.org/10.1371/journal.pone.0299480 (2024).
Stated, R. M. et al. Impacts of dietary selenium nanoparticles from Spirulina platensis on progress efficiency, Physio-Biochemical parts and assuaging impact towards cadmium toxicity in Pacific white shrimp Litopenaeus vannamei. Catalysts 13 https://doi.org/10.3390/catal13111389 (2023).
Eissa, E. S. H. et al. Dietary results of nano Curcumin on progress performances, physique composition, blood parameters and histopathological alternation in purple Tilapia (Oreochromis sp.) challenged with Aspergillus flavus. Fishes 8 https://doi.org/10.3390/fishes8040208 (2023).
Zhang, S. et al. Bee venom remedy: potential mechanisms and therapeutic purposes. Toxicon 148, 64–73. https://doi.org/10.1016/j.toxicon.2018.04.012 (2018).
Wehbe, R. et al. Bee venom: overview of principal compounds and bioactivities for therapeutic pursuits. Molecules 24 https://doi.org/10.3390/molecules24162997 (2019).
Khalil, A., Elesawy, B. H., Ali, T. M. & Ahmed, O. M. Bee venom: from venom to drug. Molecules 26 https://doi.org/10.3390/molecules26164941 (2021).
Billingham, M. E. J., Morley, J., Hanson, J. M., Shipolini, R. A. & Vernon, C. A. An Anti-Inflammatory peptide from bee venom. Nature 245, 163–164. https://doi.org/10.1038/245163a0 (1973).
Komi, E. A., Shafaghat, D., Zwiener, R. D. & F. & Immunology of bee venom. Clin. Rev. Allergy Immunol. 54, 386–396. https://doi.org/10.1007/s12016-017-8597-4 (2018).
Oršolić, N. Bee venom in most cancers remedy. Most cancers Metastasis Rev. 31, 173–194. https://doi.org/10.1007/s10555-011-9339-3 (2012).
Perumal Samy, R. et al. Antibacterial exercise of snake, Scorpion and bee venoms: a comparability with purified venom phospholipase A2 enzymes. J. Appl. Microbiol. 102, 650–659. https://doi.org/10.1111/j.1365-2672.2006.03161.x (2007).
El-Hanoun, A., El-Komy, A., El-Sabrout, Ok. & Abdella, M. Impact of bee venom on reproductive efficiency and immune response of male rabbits. Physiol. Behav. 223, 112987. https://doi.org/10.1016/j.physbeh.2020.112987 (2020).
Han, S. M. et al. Results of honeybee venom supplementation in consuming water on progress efficiency of broiler chickens. Poult. Sci. 89, 2396–2400. https://doi.org/10.3382/ps.2010-00915 (2010).
Han, S. M. et al. Results of bee venom therapy on progress efficiency of younger pigs. 37, 253–260, (2009). https://doi.org/10.1142/S0192415X09006813
Rady, I., Siddiqui, I. A., Rady, M. & Mukhtar, H. Melittin, a significant peptide part of bee venom, and its conjugates in most cancers remedy. Most cancers Lett. 402, 16–31. https://doi.org/10.1016/j.canlet.2017.05.010 (2017).
Abd El-Wahed, A. A. et al. In Research in Pure Merchandise ChemistryVol. 60459–484 (Elsevier, 2019). ed Rahman Atta ur.
Jobling, M. & Nationwide Analysis Council (NRC). Nutrient necessities of fish and shrimp. Aquacult. Int. 20, 601–602. https://doi.org/10.1007/s10499-011-9480-6 (2012).
Duan, Y., Liu, Q., Wang, Y., Zhang, J. & Xiong, D. Impairment of the gut barrier operate in Litopenaeus vannamei uncovered to ammonia and nitrite stress. Fish Shellfish Immunol. 78, 279–288. https://doi.org/10.1016/j.fsi.2018.04.050 (2018).
Eissa, E. S. H. et al. Potential symbiotic results of β-1,3 glucan, and fructooligosaccharides on the expansion efficiency, immune response, redox standing, and resistance of Pacific white shrimp, Litopenaeus vannamei to fusarium Solani an infection. Fishes 8 https://doi.org/10.3390/fishes8020105 (2023).
El-Banna, B., Abouzeid, A., El-Damrawy, S. & El-Rayes, T. Impact of bee venom on manufacturing efficiency and immune response of broilers. Egypt. J. Nutr. Feeds. 26, 91–100. https://doi.org/10.21608/ejnf.2023.298109 (2023).
Kim, D. H. et al. Analysis of bee venom as a novel feed additive in fast-growing broilers. Br. Poult. Sci. 59, 435–442. https://doi.org/10.1080/00071668.2018.1476675 (2018).
Moreno, M. & Giralt, E. Three beneficial peptides from bee and Wasp venoms for therapeutic and biotechnological use: melittin, Apamin and mastoparan. Toxins 7, 1126–1150. https://doi.org/10.3390/toxins7041126 (2015).
Ye, M. et al. Neuroprotective results of bee venom phospholipase A2 within the 3xTg AD mouse mannequin of alzheimer’s illness. J. Neuroinflamm. 13 https://doi.org/10.1186/s12974-016-0476-z (2016). 10.
Amparyup, P., Charoensapsri, W. & Tassanakajon, A. Prophenoloxidase system and its function in shrimp immune responses towards main pathogens. Fish Shellfish Immunol. 34, 990–1001. https://doi.org/10.1016/j.fsi.2012.08.019 (2013).
Tassanakajon, A., Somboonwiwat, Ok., Supungul, P. & Tang, S. Discovery of immune molecules and their essential features in shrimp immunity. Fish Shellfish Immunol. 34, 954–967. https://doi.org/10.1016/j.fsi.2012.09.021 (2013).
Cerenius, L., Lee, B. L. & Söderhäll, Ok. The proPO-system: execs and cons for its function in invertebrate immunity. Tendencies Immunol. 29, 263–271. https://doi.org/10.1016/j.it.2008.02.009 (2008).
Mai, W. & Wang, W. Safety of blue shrimp (Litopenaeus stylirostris) towards the white spot syndrome virus (WSSV) when injected with shrimp lysozyme. Fish Shellfish Immunol. 28, 727–733. https://doi.org/10.1016/j.fsi.2010.01.002 (2010).
Banks, B. E., Dempsey, C. E., Vernon, C. A., Warner, J. A. & Yamey, J. Anti-inflammatory exercise of bee venom peptide 401 (mast cell degranulating peptide) and compound 48/80 outcomes from mast cell degranulation in vivo. Br. J. Pharmacol. 99, 350–354. https://doi.org/10.1111/j.1476-5381.1990.tb14707.x (1990).
Del Rio, D., Stewart, A. J. & Pellegrini, N. A overview of latest research on malondialdehyde as poisonous molecule and organic marker of oxidative stress. Nutr. Metabolism Cardiovasc. Dis. 15, 316–328. https://doi.org/10.1016/j.numecd.2005.05.003 (2005).
Tsikas, D. Evaluation of lipid peroxidation by measuring malondialdehyde (MDA) and kin in organic samples: analytical and organic challenges. Anal. Biochem. 524, 13–30. https://doi.org/10.1016/j.ab.2016.10.021 (2017).
Bava, R. et al. Therapeutic use of bee venom and potential purposes in veterinary medication. Veterinary Sci. 10 https://doi.org/10.3390/vetsci10020119 (2023).
Carrillo-Farnés, O., Forrellat-Barrios, A. & Guerrero-Galván, S. Vega-Villasante, F. A overview of digestive enzyme exercise in Penaeid shrimps. Crustaceana 80, 257–275 (2007).
Cheng, W., Liu, C. H., Tsai, C. H. & Chen, J. C. Molecular cloning and characterisation of a sample recognition molecule, lipopolysaccharide- and β-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 18, 297–310. https://doi.org/10.1016/j.fsi.2004.08.002 (2005).
Sritunyalucksana, Ok., Wongsuebsantati, Ok., Johansson, M. W. & Söderhäll, Ok. Peroxinectin, a cell adhesive protein related to the ProPO system from the black tiger shrimp, Penaeus monodon. Dev. Comp. Immunol. 25, 353–363. https://doi.org/10.1016/S0145-305X(01)00009-X (2001).
Zokaeifar, H. et al. Results of Bacillus subtilis on the expansion efficiency, digestive enzymes, immune gene expression and illness resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 33, 683–689. https://doi.org/10.1016/j.fsi.2012.05.027 (2012).
Chiu, C. H. et al. Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. 23, 364–377, (2007). https://doi.org/10.1016/j.fsi.2006.11.010
Thörnqvist, P. O., Johansson, M. W. & Söderhäll, Ok. Opsonic exercise of cell adhesion proteins and β-1,3-glucan binding proteins from two crustaceans. Dev. Comp. Immunol. 18, 3–12. https://doi.org/10.1016/0145-305X(94)90247-X (1994).
Johansson, M. W. & Söderhäll, Ok. A cell adhesion issue from crayfish haemocytes has degranulating exercise in direction of crayfish granular cells. Insect Biochem. 19, 183–190. https://doi.org/10.1016/0020-1790(89)90090-5 (1989).
Johansson, M. W., Lind, M. I., Holmblad, T., Thornqvist, P. O. & Soderhall, Ok. Peroxinectin, a novel cell adhesion protein from crayfish blood. Biochem. Biophys. Res. Commun. 216, 1079–1087. https://doi.org/10.1006/bbrc.1995.2731 (1995).
Kobayashi, M., Johansson, M. W. & Söderhäll, Ok. The 76 kD cell-adhesion issue from crayfish haemocytes promotes encapsulation in vitro. Cell Tissue Res. 260, 13–18. https://doi.org/10.1007/BF00297485 (1990).
Cheng, W., Tung, Y. H., Liu, C. H. & Chen, J. C. Molecular cloning and characterisation of cytosolic manganese superoxide dismutase (cytMn-SOD) from the enormous freshwater Prawn Macrobrachium rosenbergii. Fish Shellfish Immunol. 20, 438–449. https://doi.org/10.1016/j.fsi.2005.05.016 (2006).
Gómez-Anduro, G. A. et al. The cytosolic manganese superoxide dismutase from the shrimp Litopenaeus vannamei: molecular cloning and expression. Dev. Comp. Immunol. 30, 893–900. https://doi.org/10.1016/j.dci.2006.01.002 (2006).
Gainza, O. & Romero, J. J. S. r. Impact of Mannan oligosaccharides on the microbiota and productiveness parameters of Litopenaeus vannamei shrimp below intensive cultivation in Ecuador. 10, 2719, (2020). https://doi.org/10.1038/s41598-020-59587-y
Noble, T. et al. Novacq™ improves survival of Penaeus vannamei when challenged with pathogenic Vibrio parahaemolyticus inflicting acute hepatopancreatic necrosis illness. 545, 737235, (2021). https://doi.org/10.1016/j.aquaculture.2021.737235