
El-Kady, M. M. et al. Nanomaterials: A complete overview of purposes, toxicity, impression, and destiny to setting. J. Mol. Liq. 370, 121046. https://doi.org/10.1016/j.molliq.2022.121046 (2023).
Asil, S. M. et al. Theranostic purposes of multifunctional carbon nanomaterials. VIEW https://doi.org/10.1002/viw.20220056 (2023).
Uniyal, S., Choudhary, Ok., Sachdev, S. & Kumar, S. Nano-bio fusion: Advancing biomedical purposes and biosensing with practical nanomaterials. Choose. Laser Technol. 168, 109938. https://doi.org/10.1016/j.optlastec.2023.109938 (2024).
Solar, L. et al. Good nanoparticles for most cancers remedy. Sign. Transduct. Goal. Remedy https://doi.org/10.1038/s41392-023-01642-x (2023).
Mandhata, C. P., Sahoo, C. R. & Padhy, R. N. Biomedical purposes of biosynthesized gold nanoparticles from cyanobacteria: An outline. Biol. Hint Elem. Res. https://doi.org/10.1007/s12011-021-03078-2 (2022).
Mahmoudi, A., Kesharwani, P., Majeed, M., Teng, Y. & Sahebkar, A. Latest advances in nanogold as a promising nanocarrier for curcumin supply. Colloids Surf. B Biointerfaces. 215, 112481. https://doi.org/10.1016/j.colsurfb.2022.112481 (2022).
Garg, R. et al. Biomedical and catalytic purposes of agri-based biosynthesized silver nanoparticles. Environ. Pollut. 310, 119830. https://doi.org/10.1016/j.envpol.2022.119830 (2022).
Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y. & Aldughaim, M. S. Nanoparticles as drug supply programs: A overview of the implication of nanoparticles’ physicochemical properties on responses in organic programs. Polymers https://doi.org/10.3390/polym15071596 (2023).
Sakthi Devi, R., Girigoswami, A., Siddharth, M. & Girigoswami, Ok. Purposes of gold and silver nanoparticles in theranostics. Appl. Biochem. Biotechnol. https://doi.org/10.1007/s12010-022-03963-z (2022).
Krishnan, S. et al. Nanotechnology-based therapeutic formulations within the battle in opposition to animal coronaviruses: An replace. J. Nanopart. Res. https://doi.org/10.1007/s11051-021-05341-y (2021).
Hu, T. et al. Layered double hydroxide-based nanomaterials for biomedical purposes. Chem. Soc. Rev. https://doi.org/10.1039/d2cs00236a (2022).
Jing, G. et al. Interference of layered double hydroxide nanoparticles with pathways for biomedical purposes. Adv. Drug Deliv Rev. 188, 114451. https://doi.org/10.1016/j.addr.2022.114451 (2022).
Xing, S. et al. NIR-triggered arsenic-loaded layered double hydroxide-based movies for localized thermal synergistic chemotherapy. J. Colloid Interface Sci. 675, 857–869. https://doi.org/10.1016/j.jcis.2024.07.038 (2024).
Domańska, I. M. et al. The affect of electron beam and gamma irradiation on paclitaxel-loaded nanoparticles of absolutely randomized copolymers in relation to potential sterilization. J. Drug Deliv Sci. Technol. 90, 105115. https://doi.org/10.1016/j.jddst.2023.105115 (2023).
Vodyashkin, A., Stoinova, A. & Kezimana, P. Promising biomedical programs primarily based on copper nanoparticles: Synthesis, characterization, and purposes. Colloids Surf. B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2024.113861 (2024).
Sekitmen, G. B., Su, E., Gür, S. D., İde, S. & Okay, O. Sterilization research of hydrogel nanocomposites designed for doable biomedical purposes earlier than in vivo analysis. React. Funct. Polym. 180, 105393. https://doi.org/10.1016/j.reactfunctpolym.2022.105393 (2022).
Bernal-Chávez, S. A. et al. Insights into terminal sterilization processes of nanoparticles for biomedical purposes. Molecules https://doi.org/10.3390/molecules26072068 (2021).
Bento, S. A., Gaspar, C., Coimbra, M. C., de Sousa, P. & Braga, E. M. M. A overview of typical and rising applied sciences for hydrogels sterilization. Int. J. Pharm. https://doi.org/10.1016/j.ijpharm.2023.122671 (2023).
Qian, Q. et al. Aspartic acid-promoted extremely selective and delicate colorimetric sensing of cysteine in rat mind. Anal. Chem. 84, 9579–9584. https://doi.org/10.1021/ac3024608 (2012).
Conde-Gonzalez, J. E. et al. Adsorption of silver nanoparticles from aqueous resolution on copper-based metallic natural frameworks (HKUST-1). Chemosphere 150, 659–666. https://doi.org/10.1016/j.chemosphere.2016.02.005 (2016).
Youssef, A. M., Abdel-Aziz, M. S. & El-Sayed, S. M. Chitosan nanocomposite movies primarily based on Ag-NP and Au-NP biosynthesis by Bacillus subtilis as packaging supplies. Int. J. Biol. Macromol. 69, 185–191. https://doi.org/10.1016/j.ijbiomac.2014.05.047 (2014).
Darwish, M. et al. Speedy synthesis of metallic nanoparticles utilizing low-temperature, low-pressure argon plasma chemistry and self-assembly. Inexperienced. Chem. 24, 8142–8154. https://doi.org/10.1039/d2gc02592b (2022).
Moosavy, M. H. et al. Inexperienced synthesis, characterization, and organic analysis of gold and silver nanoparticles utilizing Mentha spicata important oil. Sci. Rep. https://doi.org/10.1038/s41598-023-33632-y (2023).
Nishanthi, R. et al. Inexperienced synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and analysis of their synergistic antibacterial exercise after combining with completely different lessons of antibiotics. Mater. Sci. Eng. C Mater. Biol. Appl. 96, 693–707. https://doi.org/10.1016/j.msec.2018.11.050 (2019).
Zhang, Y. et al. Preparation of Lignosulfonate@AgNPs colloidal nanocrystal clusters by way of in situ discount, confined development, and self-assembly. ACS Maintain. Chem. Eng. 11, 11130–11139. https://doi.org/10.1021/acssuschemeng.3c01719 (2023).
Jin, Q. et al. Sturdy interplay between Au nanoparticles and porous polyurethane sponge allows environment friendly environmental catalysis with excessive reusability. Catal. Right this moment. 358, 246–253. https://doi.org/10.1016/j.cattod.2020.01.023 (2020).
Md Salim, R., Asik, J. & Sarjadi, M. S. Chemical practical teams of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wooden Sci. Technol. 55, 295–313. https://doi.org/10.1007/s00226-020-01258-2 (2021).
Duan, M. et al. Latest progress on preparation and purposes of layered double hydroxides. Chin. Chem. Lett. 33, 4428–4436. https://doi.org/10.1016/j.cclet.2021.12.033 (2022).
Filippov, S. Ok. et al. Dynamic mild scattering and transmission electron microscopy in drug supply: A roadmap for proper characterization of nanoparticles and interpretation of outcomes. Mater. Horiz. https://doi.org/10.1039/d3mh00717k (2023).
Li, H., Hao, X., Liu, Y., Li, Y. & Jin, Z. Zn(x)Cd(1-x)S nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 572, 62–73. https://doi.org/10.1016/j.jcis.2020.03.052 (2020).
Lin, J., Zhang, Y., Zhang, Q., Shang, J. & Deng, F. Enhanced adsorption properties of natural ZnCr-LDH synthesized by comfortable template technique for anionic dyes. Environ. Sci. Pollut Res. Int. 28, 48236–48252. https://doi.org/10.1007/s11356-021-14035-w (2021).
Zhang, T., Shang, H., Zhang, B., Yan, D. & Xiang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox technique for extremely selective CO(2) discount. ACS Appl. Mater. Interfaces. 13, 16536–16544. https://doi.org/10.1021/acsami.1c02737 (2021).
Li, S. et al. Excessive-performance versatile uneven supercapacitor primarily based on CoAl-LDH and rGO electrodes. Nanomicro Lett. 9, 31. https://doi.org/10.1007/s40820-017-0134-8 (2017).
Sanati, S. & Rezvani, Z. g-C3N4 nanosheet@CoAl-layered double hydroxide composites for electrochemical power storage in supercapacitors. Chem. Eng. J. 362, 743–757. https://doi.org/10.1016/j.cej.2019.01.081 (2019).
Wen, J. et al. Development of a biodegradable, versatile nanocarrier for elective mixture most cancers remedy. Acta Biomater. 83, 359–371. https://doi.org/10.1016/j.actbio.2018.11.009 (2019).
Liu, Z. et al. Synthesis, anion trade, and delamination of Co-Al layered double hydroxide: Meeting of the exfoliated nanosheet/polyanion composite movies and magneto-optical research. J. Am. Chem. Soc. 128, 4872–4880 (2006).
Cheng, W. et al. Design anion regulated layered double hydroxide and discover its theoretical mechanism of immobilizing uranium. J. Hazard. Mater. 437, 129352. https://doi.org/10.1016/j.jhazmat.2022.129352 (2022).
Burlec, A. F. et al. Present overview of metallic nanoparticles’ synthesis, characterization, and biomedical purposes, with a deal with silver and gold nanoparticles. Prescription drugs https://doi.org/10.3390/ph16101410 (2023).
Calderón Bedoya, P. A., Botta, P. M., Bercoff, P. G. & Fanovich, M. A. Affect of the milling supplies on the mechanochemical synthesis of magnetic iron oxide nanoparticles. J. Alloys Compd. 939, 168720. https://doi.org/10.1016/j.jallcom.2023.168720 (2023).
Farghadin, M., Haghighi, R. D., Hosseinabadi, N. & Jafari, E. Hydrothermal synthesis of multiferroics ferrite bismuth nanoparticles with lanthanum and barium: Structural and magnetic properties investigation. J. Mol. Struct. 1286, 135505. https://doi.org/10.1016/j.molstruc.2023.135505 (2023).
Kumari, S. et al. A complete overview on varied strategies used for synthesizing nanoparticles. J. Mater. Res. Technol. 27, 1739–1763. https://doi.org/10.1016/j.jmrt.2023.09.291 (2023).
Jiang, Y. et al. Inexperienced synthesis of metal-based nanoparticles for sustainable agriculture. Environ. Pollut. 309, 119755. https://doi.org/10.1016/j.envpol.2022.119755 (2022).
Starsich, F. H. L., Herrmann, I. Ok. & Pratsinis, S. E. Nanoparticles for biomedicine: Coagulation throughout synthesis and purposes. Annu. Rev. Chem. Biomol. Eng. 10, 155–174. https://doi.org/10.1146/annurev-chembioeng-060718-030203 (2019).
Jamkhande, P. G., Ghule, N. W., Bamer, A. H. & Kalaskar, M. G. Steel nanoparticles synthesis: An outline on strategies of preparation, benefits and downsides, and purposes. J. Drug Deliv Sci. Technol. 53. https://doi.org/10.1016/j.jddst.2019.101174 (2019).
Dong, Y., Wen, B., Chen, Y., Cao, P. & Zhang, C. Autoclave-free facile method to the synthesis of extremely tunable nanocrystal clusters for magnetic responsive photonic crystals. RSC Adv. 6, 64434–64440. https://doi.org/10.1039/c6ra10355c (2016).
Johny, J. et al. Affect of sterilization on the colloidal stability of ligand-free gold nanoparticles for biomedical purposes. Langmuir https://doi.org/10.1021/acs.langmuir.2c01557 (2022).
Yuan, H. et al. Medical relevant carboxymethyl Chitosan with gel-forming and stabilizing properties primarily based on terminal sterilization strategies of electron beam irradiation. ACS Omega. https://doi.org/10.1021/acsomega.4c01299 (2024).
Bento, S. A., Gaspar, C., Coimbra, M. C., de Sousa, P., Braga, E. M. & H. C. & A overview of typical and rising applied sciences for hydrogels sterilization. Int. J. Pharm. 634, 122671. https://doi.org/10.1016/j.ijpharm.2023.122671 (2023).
Franca, A. et al. Sterilization issues: Penalties of various sterilization strategies on gold nanoparticles. Small 6, 89–95. https://doi.org/10.1002/smll.200901006 (2010).
Negri, C. et al. Operando UV-vis spectroscopy for real-time monitoring of nanoparticle dimension in response circumstances: A case examine on rWGS over Au nanoparticles. Catal. Sci. Technol. https://doi.org/10.1039/d3cy01392h (2024).
Mourdikoudis, S., Pallares, R. M. & Thanh, N. T. Ok. Characterization strategies for nanoparticles: Comparability and complementarity upon learning nanoparticle properties. Nanoscale 10, 12871–12934. https://doi.org/10.1039/c8nr02278j (2018).
Khan, S. et al. Inexperienced synthesis of silver and gold nanoparticles in Callistemon viminalis extracts and their antimicrobial actions. Bioprocess. Biosyst Eng. https://doi.org/10.1007/s00449-024-02994-6 (2024).
Ullah, I. et al. Peganum harmala L. extract-based gold (Au) and silver (Ag) nanoparticles (NPs): Inexperienced synthesis, characterization, and evaluation of antibacterial and antifungal properties. Meals Sci. Nutr. https://doi.org/10.1002/fsn3.4112 (2024).
Babay, S., Bulou, A., Mercier, A. M. & Toumi, M. The decomposition of the layered double hydroxides of Co and Al: Part segregation of a brand new single part spinel oxide. Spectrochim Acta Half. Mol. Biomol. Spectrosc. 141, 80–87. https://doi.org/10.1016/j.saa.2015.01.021 (2015).
Wan, C. et al. Hydrotalcite-derived aluminum-doped cobalt oxides for catalytic benzene combustion: Impact of calcination environment. Mol. Catal. 520, 112160. https://doi.org/10.1016/j.mcat.2022.112160 (2022).
Ju, J. J. et al. Anti-corrosion enchancment of epoxy coating by the synergistic impact of barrier shielding and slow-release primarily based on phytic acid intercalated hydrotalcite. J. Appl. Polym. Sci. https://doi.org/10.1002/app.54459 (2023).