
Clementi, M. E., Marini, S., Apartment, S. G. & Giardina, B. Antibodies towards small molecules. Ann. Ist. Tremendous. Sanita 27, 139–143 (1991).
Gradishar, W. J. Albumin-bound paclitaxel: a next-generation taxane. Skilled Opin. Pharmacother. 7, 1041–1053 (2006).
Cucinotto, I. et al. Nanoparticle albumin certain paclitaxel within the therapy of human most cancers: nanodelivery reaches prime-time? J. Drug Deliv. 2013, 905091 (2013).
Siegal, D. M. et al. Andexanet alfa for the reversal of issue Xa inhibitor exercise. N. Engl. J. Med. 373, 2413–2424 (2015).
Connolly, S. J. et al. Andexanet alfa for acute main bleeding related to issue Xa inhibitors. N. Engl. J. Med. 375, 1131–1141 (2016).
Kuhlman, B. & Bradley, P. Advances in protein construction prediction and design. Nat. Rev. Mol. Cell Biol. 20, 681–697 (2019).
Polizzi, N. F. et al. De novo design of a hyperstable non-natural protein-ligand complicated with sub-A accuracy. Nat. Chem. 9, 1157–1164 (2017).
Dou, J. et al. De novo design of a fluorescence-activating beta-barrel. Nature 561, 485–491 (2018).
Thomas, F. et al. De novo-designed alpha-helical barrels as receptors for small molecules. ACS Synth. Biol. 7, 1808–1816 (2018).
Chan, B. S. & Buckley, N. A. Digoxin-specific antibody fragments within the therapy of digoxin toxicity. Clin. Toxicol. 52, 824–836 (2014).
Tarcsa, E., Guffroy, M. R., Falahatpisheh, H., Phipps, C. & Kalvass, J. C. Antibody-drug conjugates as focused therapies: are we there but? A vital evaluate of the present scientific panorama. Drug Discov. At present Technol. 37, 13–22 (2020).
Fuentes-Antras, J., Genta, S., Vijenthira, A. & Siu, L. L. Antibody-drug conjugates: looking for companions of alternative. Tendencies Most cancers 9, 339–354 (2023).
Dumontet, C., Reichert, J. M., Senter, P. D., Lambert, J. M. & Beck, A. Antibody-drug conjugates come of age in oncology. Nat. Rev. Drug Discov. 22, 641–661 (2023).
Lu, G. et al. A selected antidote for reversal of anticoagulation by direct and oblique inhibitors of coagulation issue Xa. Nat. Med. 19, 446–451 (2013).
Curd, J., Smith, T. W., Jaton, J. C. & Haber, E. The isolation of digoxin-specific antibody and its use in reversing the consequences of digoxin. Proc. Natl Acad. Sci. USA 68, 2401–2406 (1971).
Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020).
Woolfson, D. N. A quick historical past of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).
Polizzi, N. F. & DeGrado, W. F. An outlined structural unit permits de novo design of small-molecule-binding proteins. Science 369, 1227–1233 (2020).
Yeh, A. H. et al. De novo design of luciferases utilizing deep studying. Nature 614, 774–780 (2023).
Tinberg, C. E. et al. Computational design of ligand-binding proteins with excessive affinity and selectivity. Nature 501, 212–216 (2013).
Lu, L. et al. De novo design of drug-binding proteins with predictable binding vitality and specificity. Science 384, 106–112 (2024).
Uppalapati, M. et al. A potent d-protein antagonist of VEGF-A is nonimmunogenic, metabolically steady, and longer-circulating in vivo. ACS Chem. Biol. 11, 1058–1065 (2016).
Marinec, P. S. et al. A non-immunogenic bivalent d-protein potently inhibits retinal vascularization and tumor progress. ACS Chem. Biol. 16, 548–556 (2021).
Mandal, Ok. et al. Chemical synthesis and X-ray construction of a heterochiral {d-protein antagonist plus vascular endothelial progress issue} protein complicated by racemic crystallography. Proc. Natl Acad. Sci. USA 109, 14779–14784 (2012).
Bhardwaj, G. et al. Correct de novo design of hyperstable constrained peptides. Nature 538, 329–335 (2016).
Hosseinzadeh, P. et al. Complete computational design of ordered peptide macrocycles. Science 358, 1461–1466 (2017).
Mulligan, V. Ok. et al. Computationally designed peptide macrocycle inhibitors of New Delhi metallo-beta-lactamase 1. Proc. Natl Acad. Sci. USA 118, e2012800118 (2021).
Bhardwaj, G. et al. Correct de novo design of membrane-traversing macrocycles. Cell 185, 3520–3532.e3526 (2022).
Suganuma, M. et al. Mirror-image streptavidin with particular binding to l-biotin, the unnatural enantiomer. Sci. Rep. 12, 9568 (2022).
Camarero, J. A. & Muir, T. W. Biosynthesis of a head-to-tail cyclized protein with improved organic exercise. J. Am. Chem. Soc. 121, 5597–5598 (1999).
Iwai, H. & Pluckthun, A. Round beta-lactamase: stability enhancement by cyclizing the spine. FEBS Lett. 459, 166–172 (1999).
Williams, N. Ok. et al. In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein. J. Biol. Chem. 277, 7790–7798 (2002).
de Veer, S. J., Kan, M. W. & Craik, D. J. Cyclotides: from construction to operate. Chem. Rev. 119, 12375–12421 (2019).
Huang, Y., Wiedmann, M. M. & Suga, H. RNA show strategies for the invention of bioactive macrocycles. Chem. Rev. 119, 10360–10391 (2019).
Mann, S. I., Nayak, A., Gassner, G. T., Therien, M. J. & DeGrado, W. F. De novo design, answer characterization, and crystallographic construction of an abiological Mn-porphyrin-binding protein able to stabilizing a Mn(V) species. J. Am. Chem. Soc. 143, 252–259 (2021).
Zhou, J. & Grigoryan, G. Speedy seek for tertiary fragments reveals protein sequence-structure relationships. Protein Sci. 24, 508–524 (2015).
Colombo, R. & Wealthy, J. R. The therapeutic window of antibody drug conjugates: a dogma in want of revision. Most cancers Cell 40, 1255–1263 (2022).
Saxena, A. & Wu, D. H. Advances in therapeutic Fc engineering—modulation of IgG-associated effector features and serum half-life. Entrance. Immunol. 7, 580 (2016).
Thompson, R. E. & Muir, T. W. Chemoenzymatic semisynthesis of proteins. Chem. Rev. 120, 3051–3126 (2020).
Yeates, T. O. & Kent, S. B. Racemic protein crystallography. Annu. Rev. Biophys. 41, 41–61 (2012).
Kent, S. B. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis. Curr. Opin. Chem. Biol. 46, 1–9 (2018).
Mortenson, D. E. et al. Excessive-resolution buildings of a heterochiral coiled coil. Proc. Natl Acad. Sci. USA 112, 13144–13149 (2015).
Kreitler, D. F. et al. A hendecad motif is most popular for heterochiral coiled-coil formation. J. Am. Chem. Soc. 141, 1583–1592 (2019).
Vlieghe, P., Lisowski, V., Martinez, J. & Khrestchatisky, M. Artificial therapeutic peptides: science and market. Drug Discov. At present 15, 40–56 (2010).
Scott, R. P. & Quaggin, S. E. Overview sequence: the cell biology of renal filtration. J. Cell Biol. 209, 199–210 (2015).
Daniel, R. M., Cowan, D. A., Morgan, H. W. & Curran, M. P. A correlation between protein thermostability and resistance to proteolysis. Biochem. J. 207, 641–644 (1982).
Sonesson, A. & Rasmussen, B. B. In vitro and in vivo human metabolism of degarelix, a gonadotropin-releasing hormone receptor blocker. Drug Metab. Dispos. 41, 1339–1346 (2013).
Kenney, J. S., Hughes, B. W., Masada, M. P. & Allison, A. C. Affect of adjuvants on the amount, affinity, isotype and epitope specificity of murine antibodies. J. Immunol. Strategies 121, 157–166 (1989).
Angelillo-Scherrer, A. et al. Suggestions for using andexanet alfa within the administration of bleeding in sufferers on oral issue Xa inhibitors in Switzerland: Guideline from the Working Social gathering Hemostasis of the Swiss Society of Hematology. Swiss Med. Wkly. 153, 40113 (2023).
Siegal, D. et al. Security, pharmacokinetics, and reversal of apixaban anticoagulation with andexanet alfa. Blood Adv. 1, 1827–1838 (2017).
Chipot, C. Free vitality strategies for the outline of molecular processes. Annu. Rev. Biophys. 52, 113–138 (2023).
Hub, J. S., de Groot, B. L. & van der Spoel, D. g_wham—a free weighted histogram evaluation implementation together with sturdy error and autocorrelation estimates. J. Chem. Principle Comput. 6, 3713–3720 (2010).
Ngo, S. T., Vu, Ok. B., Bui, L. M. & Vu, V. V. Efficient estimation of ligand-binding affinity utilizing biased sampling methodology. ACS Omega 4, 3887–3893 (2019).
Sarah et al. Binding and recognition of GATATC goal sequences by the EcoRV restriction endonuclease: a examine utilizing fluorescent oligonucleotides and fluorescence polarization. Biochemistry 40, 2484–2494 (2001).
Rossi, A. M. & Taylor, C. W. Evaluation of protein-ligand interactions by fluorescence polarization. Nat. Protoc. 6, 365–387 (2011).